6 F eb 2 00 7 Invariant observers

نویسنده

  • Pierre Rouchon
چکیده

This paper presents three non-linear observers on three examples of engineering interest: a chemical reactor, a non-holonomic car, and an inertial navigation system. For each example, the design is based on physical symmetries. This motivates the theoretical development of invariant observers, i.e, symmetry-preserving observers. We consider an observer to consist in a copy of the system equation and a correction term, and we give a constructive method (based on the Cartan moving-frame method) to find all the symmetry-preserving correction terms. They rely on an invariant frame (a classical notion) and on an invariant output-error, a less standard notion precisely defined here. For each example, the convergence analysis relies also on symmetries consideration with a key use of invariant state-errors. For the non-holonomic car and the inertial navigation system, the invariant state-errors are shown to obey an autonomous differential equation independent of the system trajectory. This allows us to prove convergence, with almost global stability for the non-holonomic car and with semi-global stability for the inertial navigation system. Simulations including noise and bias show the practical interest of such invariant asymptotic observers for the inertial navigation system. keywords: nonlinear observer, invariants, symmetry, Lie groups, moving frame, inertial navigation, chemical reactor. ∗S. Bonnabel, Ph. Martin and P. Rouchon are with Centre Automatique et Systèmes, École des Mines de Paris, 60 boulevard Saint-Michel, 75272 Paris CEDEX 06, FRANCE [email protected], [email protected], [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 0 60 20 16 v 1 7 F eb 2 00 6 Magnetic Geodesic Flows on Coadjoint Orbits ∗

We describe a class of completely integrable G-invariant magnetic geodesic flows on (co)adjoint orbits of a compact connected Lie group G with magnetic field given by the Kirillov-Konstant 2-form.

متن کامل

ar X iv : h ep - t h / 06 02 17 7 v 1 18 F eb 2 00 6 Relativistic particle dynamics in D = 2 + 1 .

We propose a SUSY variant of the action for a massless spinning particles via the inclusion of twistor variables. The action is constructed to be invariant under SUSY transformations and τ -reparametrizations even when an interaction field is including. The constraint analysis is achieved and the equations of motion are derived. The commutation relations obtained for the commuting spinor variab...

متن کامل

/ 06 02 25 0 v 1 23 F eb 2 00 6 hep - th / 0602250 KUL - TF - 06 / 04 Geometry of type II common sector N = 2 backgrounds

We describe the geometry of all type II common sector backgrounds with two supersymmetries. In particular, we determine the spacetime geometry of those supersymmetric backgrounds for which each copy of the Killing spinor equations admits a Killing spinor. The stability subgroups of both Killing spinors are Spin(7) ⋉ R, SU(4) ⋉ R and G2 for IIB backgrounds, and Spin(7), SU(4) and G2 ⋉ R 8 for II...

متن کامل

F eb 2 00 6 UPPER BOUNDS FOR THE DAVENPORT CONSTANT

We prove that for all but a certain number of abelian groups of order n the Davenport constant is atmost n k +k−1 for positive integers k ≤ 7. For groups of rank three we improve on the existing bound involving the Alon-Dubiner constant.

متن کامل

ar X iv : h ep - p h / 07 02 02 6 v 1 2 F eb 2 00 7 The τ lepton anomalous magnetic moment

We review the Standard Model prediction of the τ lepton g−2 presenting updated QED and electroweak contributions, as well as recent determinations of the leading-order hadronic term, based on the low energy e + e − data, and of the hadronic light-by-light one.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008